A Novel CD19-Anti-CD20 Bridging Protein To Prevent and Reverse Relapses from CAR-CD19 T Cell Therapy

Characterization, *in vitro* and *in vivo* activity

Paul D Rennert, President & CSO, Aleta Biotherapeutics
Approved CAR-CD19 Therapies Have Changed the Clinical Treatment Paradigm For B-cell Tumors…

CAR-CD19 T cell therapies have been approved for subsets of r/r NHL and ALL

Axicabtagene Ciloleucel CAR T-Cell Therapy in Refractory Large B-Cell Lymphoma

Tisagenlecleucel in Children and Young Adults with B-Cell Lymphoblastic Leukemia

Shannon L. Mace, M.D., Ph.D., Theodore W. Laetsch, M.D., Jochen Buechner, M.D., Ph.D., Susana Rives, M.D., Ph.D., Michael Boyer, M.D., Henriques Bittencourt, M.D., Ph.D., Peter Bader, M.D., Michael R. Verneris, M.D., Heather E. Stefanaki, M.D., Ph.D., Gary D. Myers, M.D., Muna Qayed, M.D., Barbara De Mierloose, M.D., Ph.D., Hidefurum Hiramatsu, M.D., Ph.D., Krista Schils, M.D., Kara L. Davis, D.O., Paul L. Martin, M.D., Ph.D., Eneida R. Nemecok, M.D., Gregory A. Yank, M.D., Christina Peters, M.D., Andre Baruchel, M.D., Nicolas Boisvert, M.D., Ph.D., Françoise Mechinaud, M.D., Adriana Baldazzi, M.D., Joerg Krueger, M.D., Carl H. June, M.D., Bruce L. Levine, Ph.D., Patricia Wood, M.D., Ph.D., Tatiana Taran, M.D., Mimi Leung, M.P.H., Karen T. Mueller, Pharm.D., Yiyun Zhang, Ph.D., Kapildev Sen, Ph.D., David Lebwohl, M.D., Michael A. Pulskifer, M.D., and Stephan A. Grupp, M.D., Ph.D.
CAR-CD19 therapy: responses & relapses

- CAR-CD19 therapy produces high complete response rates in NHL and ALL
- The high CR rate is impacted by relapses
 - Some have relapsed with CD19-negative or dim tumors
 - Some have had a suboptimal response and have failed to clear the tumor burden
- Patients can relapse with CAR-CD19 T cells still present

<table>
<thead>
<tr>
<th>CR rate</th>
<th>relapse rate</th>
<th>% CD19-relapses</th>
</tr>
</thead>
<tbody>
<tr>
<td>72.4%</td>
<td>35%</td>
<td>41%</td>
</tr>
</tbody>
</table>

r/r pediatric and adult ALL and NHL (multiple centers, CD28 and 4-1BB based-constructs*)

* calculated from Majzner & Mackall, Nat Med. 2019
Most relapses occur in the first 6 months or less

Adult NHL
Axicabtagene Ciloleucel, Ph1

Pediatric ALL
Tisagenlecleucel, Ph2

Neelapu, Locke et al 2017. NEJM
Maude et al 2018. NEJM
Can we rescue the CAR-CD19 activity?

- We created a CD19 – anti-CD20 bridging protein
 - The CD19 extracellular domain will bind anti-CD19 CARs and will bind CD20 on the target tumor cell
 - Re-stimulate any CAR19 present in the patient by providing additional antigen
- CD20 is expressed in virtually all NHL cases and 30-40% of ALL cases
- CD20 expression is relatively insensitive to selection pressure: CD20 escapes are uncommon

This protein bridges CAR-CD19 T cells to tumor cells, forming a cytotoxic synapse and triggering tumor cell killing.
Retargeting and therefore reactivating CAR-CD19 T cells

CD19 anti-CD20

anti-CD19 CAR-T Cell

B Cell Tumor

CD20
Characterizing bridging proteins

Cell binding (anti-CD19-PE)

- **293-CD20 cells**

Cytotoxicity (+ CAR-CD19 T cells)

<table>
<thead>
<tr>
<th></th>
<th>binding EC$_{50}$</th>
<th>cytotoxicity IC$_{50}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>prototype</td>
<td>6.7 nM</td>
<td>143 pM / 8 ng/ml</td>
</tr>
<tr>
<td>candidate - 1</td>
<td>3.6 nM</td>
<td>66 pM / 3.8 ng/ml</td>
</tr>
<tr>
<td>candidate - 2</td>
<td>1.3 nM</td>
<td>22 pM / 1.3 ng/ml</td>
</tr>
</tbody>
</table>

- Small protein
- High affinity binding
- Potent mediator of CAR-CD19 cytotoxicity
Delivering the bridging protein

- Clone into a CAR-CD19 lentiviral construct as a dual-targeting therapy
- Engineer as an extended half-life biologic for injection
A candidate bridging protein cloned downstream of a CAR-CD19

<table>
<thead>
<tr>
<th></th>
<th>binding EC_{50}</th>
<th>cytotoxicity IC_{50}</th>
</tr>
</thead>
<tbody>
<tr>
<td>candidate - 2</td>
<td>1.3 nM</td>
<td>22 pM / 1.3 ng/ml</td>
</tr>
</tbody>
</table>

“CD20-bridging CAR19 T cell”

![Diagram of CAR-CD19 and Bridging protein]
CD20-bridging CAR19 T cell activity in vitro

- Bridging protein secretion measured at 10 ng/ml in vitro
- High affinity binding to CAR-CD19 and to CD20 (1-2 nM)

JeKo (CD19+/CD20+)

OC1-Ly3 (CD19-/CD20+)

CD20-bridging CAR19 T cells
Two means of delivery

• Cloned into a CAR-CD19 lentiviral construct

• Engineered as a biologic with extended half-life

 - Added to a novel series of CD20 binders
 - Albumin binding provides FcRN-mediated half-life extension of ~ 3 weeks
 - Importantly, binding to albumin does not functionally multimerize the bound protein, cf. Fc-fusions
In vitro characterization of half-life extended bridging proteins

- Highly purified monomeric proteins from standard mammalian expression culture
- Do not induce tonic signaling when bound to CAR-CD19
- Stable at 37°C in serum x 3 days: no aggregation, no clipping
- Potent binding, potently cytotoxic in the presence of CD20-positive cells and CAR-CD19 T cells

<table>
<thead>
<tr>
<th></th>
<th>Prototype bridging protein - anti-albumin</th>
<th>Candidate bridging protein</th>
<th>Candidate bridging protein - anti-albumin</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC$_{50}$ (ng/mL)</td>
<td>1</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>IC$_{50}$</td>
<td>14.4 pM</td>
<td>0.84 pM</td>
<td>0.69 pM</td>
</tr>
</tbody>
</table>
In vitro model of antigen heterogeneity

- This simple experiment demonstrates that the CAR-CD19 can kill directly (targeting CD19) and indirectly (via the CD19-anti-CD20 bridging protein)
In vitro model of antigen escape using dual-antigen-positive cells

- JeKo cell line is derived from a mantle cell lymphoma
- These cells brightly express CD19 and CD20
- The vast majority of individual JeKo cells are CD19+/CD20+
- Regardless, these cells are highly proliferative and prone to antigen escape
Establishing antigen escape

- JeKo cells targeted by CAR-CD19 T cells

Day 1

- 1:1
- 0.3:1
- 0.1:1

B cells

CAR-CD19 T cells

Day 6

CD19+/CD20+

Day 13

CD19-/CD20+
Reversing antigen escape

- JeKo cells targeted by CAR-CD19 T cells, then by CAR-CD19 T cells with or without bridging protein

Rest x 48 hours

Add excess CAR-CD19 cells (10:1)

Add excess bridging protein (1 µg/ml) *(candidate BP – anti-albumin)*

Add CAR-CD19 T cells and bridging protein *(candidate BP – anti-albumin)*

ESCAPE

mixed populations

CD19- cells untouched

no cell death

all target cells eliminated
Delivering the bridging protein *in vivo*

- CD20-bridging CAR-CD19 T cells

- Extended half-life biologic for injection
Nalm6-luciferase model (CD19+, CD20-)

- Nalm6-luciferase, pre-implanted iv x 3 days
- Challenged with CAR-CD19 or CAR-CD19 with bridging protein delivery

![Graph showing flux total over days for untreated mice, untransduced T cells, CAR-CD19 T cells, and CAR-CD19 T cells + bridging protein (100ug/q3w).]

Untreated mice
Untransduced T cells
CAR-CD19 T cells
CAR-CD19 T cells + bridging protein (100ug/q3w)
CD20-bridging CAR19 T cells
Evolution of escape in the JeKo model (CD19+, CD20+)

Day 18
Untreated, UTD

Day 28
Untreated mice, untransduced T cells
CAR-CD19 T cells

Day 32
CAR-CD19 T cells + bridging protein
CD20-bridging CAR19 T cells
Next steps

• Allow relapse to occur in the JeKo model, then add bridging protein to reverse
• Evaluate PDX models if available (ie. CD19-/CD20+ or mixed phenotype)

• IND in 16 -18 months, Phase 1 dose escalation (single and multiple dose)
• We will enroll patients who are relapsing at < 6 months post-CAR-CD19 infusion
• The Phase 1 PD marker is simple – do the CAR-CD19 T cells expand above baseline?
• CAR T expansion is the single best predictor of therapeutic efficacy; the PD marker is clinically relevant
Acknowledgements

<table>
<thead>
<tr>
<th>Aleta Biotherapeutics</th>
<th>University of Minnesota</th>
<th>Scientific Advisory Board</th>
</tr>
</thead>
<tbody>
<tr>
<td>Christine Ambrose</td>
<td>Benjamin Hackel</td>
<td>Sarah Tasian, CHOP</td>
</tr>
<tr>
<td>Lihe Su</td>
<td>Justin Klessmith</td>
<td>James Mulé, Moffitt Cancer Center</td>
</tr>
<tr>
<td>Lan Wu</td>
<td>Ian Schrack</td>
<td>Chris Klebanoff, MSKCC</td>
</tr>
<tr>
<td>Fay Dufort</td>
<td></td>
<td>Christine Brown, City of Hope</td>
</tr>
<tr>
<td>Alyssa Bir</td>
<td>Funding</td>
<td></td>
</tr>
<tr>
<td>Tom Sanford</td>
<td>Advent Life Sciences</td>
<td></td>
</tr>
<tr>
<td>Roy Lobb</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

61st ASH Annual Meeting, December 7-10, 2019, Orlando, FL